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Solitary surface waves are usually studied theoretically in the framework of the shallow- 
water model. Solitary waves have also been studied on the basis of a numerical solution of 
the Navier-Stokes equations [i], as well as the Cauchy-Poisson problem [2]. 

In the present paper we consider the numerical simulation of solitary waves on the basis 
of a discrete model of an incompressible liquid. The essence of the approach is the modeling 
of an incompressible continuum with the help of a finite system of particles with holonomic 
constraints [3]. Even when the spatial quantization is large, this model is consistent in 
the sense of the fundamental conservation laws of mechanics. The discrete model considered 
here is constructed with the help of a regular quadrangular grid and, therefore, is somewhat 
similar to the Lagrangian method LINC [4]. A similar discrete model was used in [5, 6]. We 
present calculated results for solitary waves of various amplitudes, the kinematic and dy- 
namic characteristics of the run-up of solitary waves on vertical and inclined walls, and also 
a comparison between the available theoretical and experimental results. 

i. Description of the Model. We consider a layer of incompressible liquid with a free 
surface and a finite depth. We split up the volume ~ occupied by the liquid into quadrangles 
(Fig. i). We assume that at the grid points there are particles, where the mass of a particle 
is the average of the masses of the quadrangles corresponding to the given grid point. For 
example, for internal grid points m i ~ = (p/4)(V. ~ + V i i ~ + V. i ~ i + Vi j-l) (P is the , j  1 , j  - , j  1 -  , j -  

density of the liquid). Hence the continuous medium is approximated by a finlte system of 
particles. It is well known that in the continuum model of an incompressible liquid there 
are no potential interactions between the particles of the medium (i.e., no internal energy). 
In addition, the nature of the forces of interaction are not in general considered. Instead, 
the kinematic condition of incompressibility is introduced, which is a restriction on the 
possible motion of the medium. In our discrete model it is also necessary to introduce a 
discrete incompressibility condition, guaranteeing the constancy of the volume of liquid. 
Such a condition could be the requirement that the areas of all quadrangles are constant 
(Vi, j = const) during the motion of the medium. The area of each quadrangle is a function 
of the coordinates of its corners Vi, j = V(ri,j, ri,j+1, ri+1,j+1, ri+1,j) ; therefore, the 
relation Vi. ~ = const represents a set of holo~omic ~onstraint~ imposed on the motion of the 
particles. "~or particles lying on the solid boundaries we impose the additional restriction 
that motion is possible only along the boundary and that the particles cannot penetrate the 
boundary. These restrictions are also obviously holonomic constraints. For example, for 
particles lying on the right wall the constraint has the form Yi,j - y0 _ (xi, j _ x0)tan~ = 0. 

Therefore, we obtain a finite mechanical system with holonomic constraints as a model 
of the incompressible liquid. The force of gravity must be introduced in order to describe 
wave motion. The simplest method of doing this [4-6] is to assume that the force of gravity 
mi,~g acts on each particle. However, it is easily shown in this case that when the volume 

is broken up with the help of a nonorthogonal grid there are situations in which the unper- 
turbed layer of liquid does not have minimum potential energy and, therefore, the equilibrium 
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position is unstable. This leads to unphysical motion of the particles in the calculations 
and, as a result, to the breakdown of the solution. Therefore, the force of gravity is in- 
troduced differently in our treatment. The potential energy of the layer of liquid is 

pgjydxdg. The discrete medium occupies a region ~' with a free boundary given by the broken 
.q 

line formed by the surface particles. We assume that the potential energy of our discrete 

system is 11 = pg~ ydxdg. Then 11 is a minimum, subject to the condition of a constant area 

~', when the free surface is horizontal. It is also evident that 11 depends only on the co- 
ordinates of the surface particles. The Lagrangian of the discrete system then has the form 

L = -~- . ~  m~,j (r~,j) 2 -- 11. ( i. I) 
%2 

To derive the equations of motion, (i.i) must be supplemented by the holonomic constraints 
corresponding to the incompressibility condition 

Vi,~ ---- const ( 1 . 2 )  

and the nonpenetrability condition 

7p,q (t, ri,y) : 0. (i.3) 

In (1.3) the time t appears explicitly in the case when one of the solid boundaries moves 
according to a prescribed equation. For example, putting a = ~(t), we can obtain an oscilla- 
ting right wall; a type of wave generator. The constrains (1.2) and (1.3) are written in 
the general form 

L(t,  r) = o, ( 1 . 4 )  

w h e r e  s = ( i ,  j )  i s  a m u l t i p l e  i n d e x  s p e c i f y i n g  t h e  number  o f  t h e  c o n s t r a i n t ;  r i s  a v e c t o r  
composed of the coordinates of all particles. The equations of motion of our discrete system 
can now be found from Hamilton's principle using the technique of Lagrange multipliers [7, 
3]: 

�9 . a / s  O H  = Z ~ s ~  a,.~' r~ = uh, [s ( t ,  r) : 0. mhuh ( i .  5 ) 

Here k = (i, j) is a multiple index specifying the number of particle; u k is the velocity 
of particle k, 8fs/Sr k = (Sfs/SXk, 8fs/SYk); A s is a Lagrange multiplier. We note that, re- 
gardless of the number of degrees of freedom, system (1.5) contains the fundamental conserva- 
tion laws of mechanics. For example, if the constraints do not depend explicitly on t, then 
the total energy of the system is conserved. If the boundary constraints (1.3) are removed 
and g = 0, then the momentum and angular momentum of the system are conserved. The conserva- 
tion laws follow from the invariance of the internal constraints (1.2), and hence also the 
total Lagrangian, to the corresponding displacement and rotation groups. 

A special algorithm was worked out for the numerical solution of (1.5), which for g = 
0 is completely conservative, i.e., the method ensures that the above conservation laws hold 
for any value of the time stepsize x. When g ~ 0, the energy is conserved to order x 2 and, 
in practice, it varies by no more than a few tenths of a percent. The algorithm has been 
described in detail in [8]; here we present only the basic computational formulas: 

where 

I i  7i~ 
r~ +1/2 = r~ -F Tu~,  

$ 

u~ +~/2 : -~ (u~ +~ + u,,), r~ +~ = r,~ + ~u~ +'/2, ~ A~,~  = F~, 

Gsl, : ~ (t,,+l/2, r~+1/2); A~v ---- ~ G,~l~" Gv,,; F~ = - -  7 Gvh" uk - -  

T O H  Z n - I - 1 / 2 ] ]  , ' ,  

(z.6) 
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TABLE i 

A ~ c 

0,52 
0,41 
0,29 
0,195 

t ,233 
1,187 
t ,136 
1,093 

t,231 
t,185 
t,134 
1,089 

We note that on each time step it is required to solve a system of linear equations, where 
the matrix A of these equations is symmetric and positive definite. Also, many of its ele- 
ments are zero, since the vectors Gsk are nonzero only for certain neighboring values of the 
indices s and k. The method of successive upper relaxation was used to solve the linear sys- 
tem of equations. It was shown in [8] that the algorithm (1.6) ensures that the constraints 
(1.4) are satisfied to within terms of order T 2. The stepsize ~ is usually chosen from the 
requirement that (1.4) be satisfied to within a specified accuracy. 

The boundary conditions on the solid surfaces, formulated as holonomic constraints (1.3), 
can be included naturally in the general scheme (1.5) and (1.6). The Lagrange multipliers cor- 
responding to these constraints represent the reaction forces of the walls on the boundary 
particles and can then be used to compute the forces acting on the walls. In some cases it 
is more convenient to decrease the dimension of the matrix of the linear system in (1.6) by 
solving some of the boundary constraints (1.3) explicitly, thereby reducing the number of 
relevant degrees of freedom. For example, in the calculations discussed below, only the x 
coordinates of the particles on the flat bottom were treated as unknowns. In other words, 
only the x coordinates of these particles were included as generalized coordinates of the 
entire system. Besides reducing the dimension of the system of equations, this device also 
leads to zero second components for some of the vectors Gsk (corresponding to derivatives 
of the volume near the boundary with respect to the coordinates of the boundary particles). 

2. Formulation of the Problem. Results of Calculations. The first problem is to ob- 
tain numerical solutions of the solitary wave type. We considered a layer of liquid in a 
trough with a horizontal bottom and vertical lateral walls with depth H = i and length L = 
58. The density of the liquid p = i and the gravitational acceleration g = I. These varia- 
bles correspond to transformation of the original equations todimensionless form with the 
help of the following natural units of measurement: p, H, U, = g~, T, = H/U. The coordi- 
nate system was chosen such that y = 0 corresponds to the unperturbed free surface and x = 0 
corresponds to the right wall. The waves were generated at the left end of the trough by 
creating a local rise in the surface of the liquid (Fig. 2) and the following vertical motion 
to the first eight surface particles (analogous to a horizontal plate moving downward): 

v =  --~-~s,n ~- ,  O ' ~ t ~ T ,  

O, t > T .  
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Here h determines the amplitude of the generated wave and it is possible to choose T such 
that one can almost completely get rid of the dispersion tail. To suppress strong residual 
deformations of the grid near the wave generator after the departure of the wave, we intro- 
duced an artificial viscoelastic interation in (1.5) for particles near the wave generator. 
These forces were tuned to the grid such that they had practically no effect on the charac- 
teristics of the generated wave or on its propagation. After generation, the wave propagates 
along the trough and after a certain time its amplitude and shape become established. Figure 
3 shows the calculated waveform at the end of the trough with amplitude A = 0.41. The calcu- 
lation was performed on the grid shown in Fig. 2 with h I = 1 for the horizontal dimension 
of a cell, h 2 = 0.5 for the vertical dimension, and �9 = 0.5 was the time stepsize. The 
dashed curve shows the waveform obtained from the solution of the shallow-water theory in 
the second approximation [9]. 

We also compared the propagation velocity c of the waves with the second approximation 
of the shallow-water theory. The results are given in Table 1 for several values of the ampli 
tude. We see that even for large spatial quantization our model has the capability of closely 
reproducing the parameters of solitary waves. 

We next considered the run-up of solitary waves on a vertical wail. We used a shorter 
trough of length L = 22 and initial data obtained from the solution of the preceding problem 
and the corresponding wave with its crest at x = -14. Linear interpolation of the initial 
data was used for calculations on the smaller-scale grids. The maximum rise ~max on the wall 
as a function of the amplitude A of the incident wave is shown in Fig. 4 for different grids 
(set of points i). For A ~ 0.3 we used grids with h I = i, h 2 = 0.5 and 0.25. For large A 
the results are given for h 2 = 0.25 and 0.125, h I = 1 and 1 - 0.5, where the grid was com- 
pressed near the right wall. Here we also show the results of laboratory experiments [i, 
ii] (sets of points 2 and 3) and [i0, 12] (dot-dashed and dashed curves) and the calculated 
results by the SUMMAC method [i] (solid curve) and the spectral method [2] (set of points 
4). Note the good agreement between the calculations with the discrete model and the calcula- 
tions of [i, 2]. The experimental values of the maximum rise have a considerable scatter, 
but are closer to the calculated results of [12]. Furthermore, we note that for A < 0.5 all 
of the results more or less fall on a single curve, but for A > 0.5 a scatter of up to 5% 
is observed between the calculations on the different grids. The scatter of the experimental 
data also strongly increases when A > 0.5. The sharp, almost threshold nature of this phe- 
nomenon suggests that the runup process becomes unstable for waves with amplitude A z 0.5. 
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A ~max Po ~lmax Po 

0,24 
0,44 
0,7 
i ,03 
i,3 

0,22 
0,36 
0,49 
0,62 
0,7 

0,27 
0,49 
0,79 
i , i7 
1,49 
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0,2i 
0,32 
0,43 
0,54 
0,6i 

We also determined the dynamic effect of the waves on the wall. In Fig. 5 the crosses 
show the calculated maximum value of the pressure on the wall at y = 0 as a function of wave 
amplitude and in Fig. 6 the crosses show the wave components of the force and torque on the 
wall, also as functions of wave amplitude. The experimental and calculated data from the 
papers cited above are also shown, as well as the calculated data from the nonlinear disper- 
sion model of [13] (in Fig. 5 curves 1-3 correspond to [12, 13, ii]; in Fig. 6 the triangles 
correspond to [2], and the dashed curve to [13]). It is interesting to note that for the 
calculations in the discrete model with a large grid containing only two cells in the vertical 
direction, the rise for large-amplitude waves decreases somewhat, while the pressure on the 
wall increases slightly, such that the results approach those of the calculations in the non- 
linear dispersion model [13]. Evidently, as the number of degrees of freedom increases the 
discrete model goes from a quality of description of the flow typical of simplified hydrodyna- 
mic models to a complete description of the flow. We plan to study this question in the future 
from the point of view of the dispersion relations. 

Figure 7 shows the time dependence of the rise q, the pressure P0 on the wall at y = 
0, and the total force (curves 1-3) during the run-up of a wave with amplitude A = 0.51. The 
double maximum in the pressure curve for large-amplitude waves, observed experimentally in 
[ii], is clearly seen in Fig. 7, as well as the lag of the peak in the rise relative to the 
peak in the pressure. The pressure and force were calculated as follows. It can be shown 
that each Lagrange multiplier X s in (1.5), corresponding to an internal constraint (1.2), 
is the approximate value of the function p + pgy in cell s (p is the total hydrodynamic pres- 
sure). Hence, the pressure in cell s is Ps = Xs - PgYs (Ys is the coordinate of a point in 

cell s). The force acting on particle k can then be calculated as Fk :~psG~h. Summing 
s 

over all particles lying in the wall, we find the resultant force F. To obtain the wave force 
from F we subtract out its hydrodynamic component (i/2)pgH 2. The torque on the wall is calcu- 
lated in a similar way. Several choices for Ys were tried. For small-scale grids,_ all 
gave nearly identical results. For larger grids the best results were obtained when Ys was 
taken to be the vertical coordinate of the center of mass of cell s. The pressure on the 
wall at y = 0 was determined by linear interpolation along the verticals of two neighboring 
cells. 
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The above results are sufficiently accurate and were obtained on a fairly large grid 
with h I = i, h 2 = 0.25, and % = 0.2. The execution time of a typical run was about i0 min 
on the SM-4 computer. Satisfactory results (differing by not more than 5% from the above 
calculations) for the rise, pressure, and force are obtained even for h I = i, h 2 = 0.5, and T = 
0.5. In this case the execution time was about a minute and a half. 

We also calculated the run-up of solitary waves on inclined walls with slope i and 0.5. 
The results for the rise and pressure at y = 0 are given in Table 2. 

Figure 8 shows for comparison the dependence of Dmax and P0 on wave amplitude A for a 
vertical wall and a wall with tan~ = 0.5 (~ = 27~ Here the dashed curves 4 give qmax and 
P0 for a linear theory of run-up on a vertical wall, curves 3 and 5 give the numerical results 
for a vertical wall, and curves 2 and 6 give the numerical results for an inclined wall. The 
dashed curve i corresponds to the empirical formula Dmax = KA~ presented in [14] with con- 
stants K = 3.4 and ~ = 1.16 corresponding to tan ~ = 0.5. We see that the numerical results 
agree quite closely with this empirical dependence. 

We note that similar discrete models can also be constructed on an arbitrary grid, such 
as the irregular grid of [15], or in general without the use of a grid [3, 16]. The form 
of Eqs. (1.5) and the algorithm (1.6) remain unchanged; only the form of the constraints (1.2) 
and (1.3) change, i.e., the particular interpretation of the incompressibility condition and 
the boundary conditions. 
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